OPEN

MODELLING AND MOTION ANALYSIS OF FIVE-BAR 5R MECHANISM

Z. BUDNIAK* and T. BIL
Faculty of Mechanical Engineering
Koszalin University of Technology
ul. Racławicka 15-17, 75-620 Koszalin, POLAND
E-mails: zbigniew.budniak@tu.koszalin.pl
tadeusz.bil@tu.koszalin.pl

Abstract

This article presents the use of the potential of the present-day CAD/CAE systems in modelling and a kinematic analysis of a spatial five-membered lever mechanism 5R. A simulation model was developed. On the grounds of the methodology developed, numerical analysis was conducted. The results of the analysis are presented in diagrams.

Key words: CAD/CAE, numerical analysis, spatial dimension chain, collision, trajectory.

1. Introduction

The present study covers a kinematic analysis of a model of a spatial five-membered lever mechanism 5 R. In order to develop the design, a designing methodology was used related to CAD/CAE computer technology (Bil and Budniak, 2012). The methodology proposed allows one to build multimembered mechanisms that use among others spatial measurement chains.

The following are the primary elements of the method realized: 3D edge modelling of the members of the mechanism; modelling of spatial measurement chains, initial kinematic analysis of the 3D skeleton design; parametric modelling of the parts and assembly of the mechanism; a collision analysis of the elements of the mechanism in motion; an analysis of the kinematic quantities of the model for its work cycle (displacements, speeds, linear and angular accelerations); a visualization of the design, a photo-realistic presentation and animation of the work of the mechanism.

2. Modelling of five-bar $\mathbf{5 r}$ mechanism

The primary element in the process of designing or an analysis of mechanical systems that use computer aided processes is the creation of a virtual model of a spatial multi-membered mechanism including its appropriate elements. In the first stage of the creation of this model, one of the following concepts can be selected:

- 3D parametric edge modelling of the arms of the mechanism (Bil and Budniak, 2012), and further making an assembly in accordance with the data contained in the mathematical model (Bil, 2012a; 2012b; Bil and Budniak, 2014);
- modelling of a spatial measurement chain in CAD software, and further modelling of the arms and the assembly of the mechanism with the use of constructive geometry (constructional planes, axes and points, as well as local coordinate systems: related to the elements of the spatial measurement chain).

[^0]In the present article, a concept was accepted where a generalized spatial five-membered lever mechanism 5R was constructed based on the spatial measurement chain created.

2.1. Spatial measurement chain

In the present study, an analysis was conducted of a spatial five-membered lever mechanism 5R that was constructed based on the mathematical model presented in the article (Bil and Budniak, 2014). Such a mechanism with five rotational pairs (Fig.1) will be formed when in the common point $S=S_{2}=R_{4}$ there will exist a kinematic pair with a common axis. In order to ensure a relative position of the points S_{2} and R_{4} with specific accuracy, one should above all determine the mutual position of the members of the mechanism. For a unique determination of the elements to be combined, the co-linearity bond of the collaborating rotational axes was used. The bond of the connection of edge ends was employed, as well. However, considering a "redefinition" of the closing members of the mechanism (connection of arms s_{2} and s_{4}), which followed from errors in the definition of the linear and angular dimensions, a distance bond was introduced.

Fig.1. Location of the arms of the virtual model of 5R mechanism.

The r_{Δ} value, which at the same time is the value of the closing link of the spatial measurement chain, and which determines the error of the mutual location of the nodal points S_{2} and S_{4}, depends on the accuracy of the mutual position of the following members: $r_{1}, r_{2}, r_{3}, r_{4}, s_{1}, s_{2}, s_{3}$ and s_{2} and their workmanship accuracy.

In real conditions, as a result of inaccuracies in the workmanship and mutual position of the arms of the mechanism, the elements to be combined in the assembly position will have displacements and angular deviations in space that make their assembly difficult.

In a general case, the value of the closing link r_{Δ} is calculated from Formula (2.1)

$$
\begin{equation*}
\boldsymbol{r}_{\Delta}=\boldsymbol{q}_{s_{2}}-\boldsymbol{q}_{s_{4}}=\boldsymbol{s}_{2}+\boldsymbol{s}_{2}-\boldsymbol{s}_{1}-\boldsymbol{s}_{3}-\boldsymbol{s}_{3}-\boldsymbol{s}_{4} \tag{2.1}
\end{equation*}
$$

where:
$\boldsymbol{q}_{s_{2}}, \boldsymbol{q}_{r_{4}}-$ vectors that determine the position of the points S_{2} and R_{4} in relation to the global system of coordinates $O X Y Z$,
$\boldsymbol{r}_{1}, \boldsymbol{r}_{2}, \boldsymbol{r}_{3}, \boldsymbol{s}_{2}, \boldsymbol{s}_{3}, \boldsymbol{s}_{4}$ - vectors that determine the position of the nodal points $R_{1}, R_{2}, R_{3}, S_{2}, S_{3}, S_{4}$ in relation to their local systems of coordinates.

A description of the configuration of the 5 R mechanism system can be considered as a description of the relative position of the local systems of coordinates connected with the individual links of the measurement chair: to the reference members r_{1} and r_{3} (the basis), the global system $O X Y Z$ is attributed. This approach to the description of this system arranges well and formalizes its modelling both in the area of the kinematics and dynamics of the mechanism.

At every moment, the movable elements of the 5 R mechanism take a specific position in relation to the base and to one another. When analysing the position of this system, it is particularly important to determine the mutual position of the points S_{2} and R_{4} for the position of the remaining members of the mechanism given. Figure 2 presents the 5 R mechanism, to which the following systems of rectangular coordinates were attributed:

- $O X Y Z$ - an absolute system of coordinates connected with the immovable arm r_{1};
- $Q_{2} X_{R_{2}} Y_{R_{2}} Z_{R_{2}}$ - the local system of coordinates that constitutes the main assembly base in the determination of the position of the member r_{2} : it was accepted that the beginning of this system Q_{2} and the axis $Z_{R_{2}}$ coincide with the beginning of the absolute system of coordinates $O X Y Z$ and its axis Z;
- $Q_{3} X_{R_{3}} Y_{R_{3}} Z_{R_{3}}, R_{2} X_{S_{2}} Y_{S_{2}} Z_{S_{2}}, R_{3} X_{S_{3}} Y_{S_{3}} Z_{S_{3}}, R_{4} X_{S_{4}} Y_{S_{4}} Z_{S_{4}}$ - the local systems of coordinates that coincide with the main assembly bases that determine the position of the arms r_{3}, s_{2}, s_{3} and s_{4}.

Fig.2. Description of the position of the points M and N of connecting members s_{2} and s_{4}.
The vectors of the positions of the points S_{2} and S_{4} in their local systems of coordinates are as follows

$$
S_{2 R_{2}}=\left[\begin{array}{c}
s_{2} \tag{2.2}\\
0 \\
0
\end{array}\right], \quad \quad R_{4 S_{3}}=\left[\begin{array}{c}
s_{4} \\
0 \\
0
\end{array}\right]
$$

The same points are described with the vectors S_{2} and R_{4} and determine their position in the $O X Y Z$ coordinate

$$
\begin{align*}
& S_{2}=R_{R_{2}} \cdot S_{2 R_{2}}+T_{R_{2}} \tag{2.3}\\
& R_{4}=R_{Q_{3}} \cdot R_{4 Q_{3}}+T_{Q_{3}} \tag{2.4}
\end{align*}
$$

where

$$
\begin{equation*}
R_{Q_{Q_{3}}}=R_{S_{3}} \cdot S_{4 S_{3}}+T_{S_{3}} \tag{2.5}
\end{equation*}
$$

$R_{R_{2}}$ - rotation matrix that determines the rotation of the local system of coordinates $R_{2} X_{S_{2}} Y_{S_{2}} Z_{S_{2}}$ around axes $X_{S_{2}}, Y_{S_{2}}, Z_{S_{2}} ; T_{R_{2}}$ - vector that describes the position of the local system of coordinates $R_{2} X_{S_{2}} Y_{S_{2}} Z_{S_{2}}$ in the system of absolute coordinates $O X Y Z ; R_{Q_{3}}$ - rotation matrix that determines the rotation of the local system of coordinates $Q_{3} X_{Q_{3}} Y_{Q_{3}} Z_{Q_{3}}$ around axes $X_{R_{3}}, Y_{R_{3}}, Z_{R_{3}} ; T_{Q_{3}}$ - vector that describes the position of the local system of coordinates $Q_{3} X_{R_{3}} Y_{R_{3}} Z_{R_{3}}$ in the system of absolute coordinates $O X Y Z$; $R_{S_{3}}$ - rotation matrix that determines the rotation of the local system of coordinates $R_{3} X_{S_{4}} Y_{S_{4}} Z_{S_{4}}$ around axes $X_{S_{4}}, Y_{S_{4}}, Z_{S_{4}} ; T_{S_{3}}$ - vector that describes the position of the local system of coordinates $Q_{3} X_{S_{3}} Y_{S_{3}} Z_{S_{3}}$ in the system of absolute coordinates $O X Y Z ; s_{2}, s_{4}$ - lengths of the arms of the 5R mechanism.

A complex movement of the arms r_{2} and s_{3} as well as the connectors s_{2} and s_{4} of the kinematic system of the mechanism under analysis constitutes the essence of the system. At any moment, the movable arms take a specific position in relation to the base: the combined arms r_{1} and r_{3}, as well as to one another. When analyzing the kinematics of this system, it is of a particular importance to determine the relative position of the points M and N for a given position of the driving member r_{2} (angle s), which is permanently connected with the movable connector s_{2}.

In the auxiliary (local) systems of coordinates $R_{2} X_{S_{2}} Y_{S_{2}} Z_{S_{2}}$ and $S_{3} X_{S_{4}} Y_{S_{4}} Z_{S_{4}}$ (Fig.2), one can describe the position of the points M and N with vectors of the lengths that are equal to m and n and are shifted along the axes $X_{S_{2}}$ and $X_{S_{4}}$ to the distances l and d, and are rotated around these axes by angles δ and ε

$$
M_{S 2}=\left[\begin{array}{c}
l \tag{2.6}\\
m \cdot \cos \delta \\
m \cdot \sin \delta
\end{array}\right], \quad \quad N_{S 4}=\left[\begin{array}{c}
d \\
n \cdot \cos \varepsilon \\
n \cdot \sin \varepsilon
\end{array}\right]
$$

In a particular case, the points M and N can for example be the gravity centre of the masses of the members s_{2} and s_{4}. The points of the remaining movable members can be defined in a similar manner.

It is advantageous to have an analytical description of the position of the kinematic system in the form of an explicit function presented above, as this constitutes the point of departure for further analyses, not only kinematic ones. In the present article, an integrated CAD/CAE system was used to determine the kinematic parameters of the movement.

2.2. Solid model

The first stage of the construction of the virtual 5 R mechanism was to create models that contained the constructive geometry of its individual parts. This geometry is formed by the structural planes, axes and structural points as well as the beginning of the local systems of coordinates. The parameters of constructive geometry, which determine the positions of the local systems of coordinates, their axes and points S_{2} and R_{4}, were written in the form of modelling variables. The values of these variables correspond to the elements of the matrix of rotations and the vectors described in Eqs (2.2)-(2.6).

Based on the model of the base of the 5 R mechanism, relations were defined that occur between the remaining elements of the assembly. For the purpose of an explicit determination of the positions of the individual elements of the mechanism, the assembly bases of the components to be combined were used that are adjacent to one another. Figure 3 presents the final view of the virtual model of the 5 R mechanism including constructive geometry that constitutes an element of the spatial measurement chain.

Fig.3. View of the virtual model of 5R mechanism.
These models are characterised by a high complexity level due to the complex constructive geometry. The rotational axes of the arms are located on different planes and are warped in relation to one another. At the same time, the semi-pairs of the neighbouring arms of the mechanism have a common point and common axes.

Fig.4. Graphical presentation of 5R mechanism that works with no collisions.

A creation of a model of a solid structure, where arm axes in the form of straight sections are connected with one another in the mechanism nodes, is not possible without avoiding collisions in motion. Therefore, a constructional solution was accepted where, in order to ensure the rotation of the arms, sliding bearings with roll journals were used. A sleeve is constituted by an opening in the housing of the arm of the mechanism. This housing is the sleeve. In order to avoid collisions, the fronts of the sleeves of the arms s_{2} and s_{4} are adjacent to one another in the plane that is perpendicular to the rotation axis in nodes $S_{2}=R_{4}$. At the same time, the remaining nodes, in accordance with Fig.4, were shifted along the individual rotation axes to the following distances: $\Delta_{R 1}=6 \mathrm{~mm}, \Delta_{R 2}=2.5 \mathrm{~mm}, \Delta_{R 3}=15 \mathrm{~mm}, \Delta_{S 3}=1.2 \mathrm{~mm}$.

3. Analysis of kinematic system

3.1. Analysis of position

A skeleton model of the 5R mechanism shown in Fig. 2 was developed for the purpose of simulation tests. In order to describe the movement trajectory and the positions of the selected elements of the mechanism, an immovable system of coordinates $Q X Y Z$ was accepted. This system is connected with the immovable arm r_{l}, whose function is performed by the base of the mechanism with brackets. Point $O=Q_{l}$ which constitutes the beginning of the immovable system of coordinates is located in the node that connects the members r_{1} and r_{2}. The X axis is connected with the member r_{1}, while the Z axis coincides with the rotation axis $Z_{R_{2}}$ of the active arm r_{2}.

The parameters related to the measurements and masses of the arms were written as modelling variables. Due to the spatial situation of the structural elements of the mechanism, reference geometry was used in the form of structural planes and axes that determine the position of the essential parameters of the draft, such as the rotation axis of the arm r_{2}, the common rotation axis of the arms r_{2} and s_{4}, r_{3} and s_{3}, s_{3} and s_{4}.

Owing to the use of the SolidWorks Motion software (Chan, 2011), it was possible to find the positions of the characteristic points of the members. The positions of these points are sought on their trajectories that are the result of those constraints (of lengths and angles) that are imposed by the individual members and kinematic pairs (Bil and Budniak, 2014).

Forcing of relative motion of the arms in order to perform a simulation of the movement was obtained by applying the rotation of the active arm r_{2}. This member performs rotational motion with a constant angular velocity $\omega_{2}=2 \pi s^{-1}$. A numerical analysis of the relative position of the members of the 5R spatial mechanism was conducted for the points M and N : the movable connectors s_{2} and s_{4}.

Figure 5 presents a five-membered mechanism 5 R with trajectories $\tau_{R_{2}}, \tau_{M}$ and $\tau_{S_{2}}$ marked by the following points: R_{2}, S_{3}, M, N and $S_{2}=S_{4}$.

Fig.5. Trajectories of selected characteristic points of 5R mechanism.

If the active member is the movable arm r_{2} that rotates with the constant rate of rotation ω_{2}, the configuration of the system is as follows:

- points $R_{2}, S_{2}=R_{4}, S_{3}=S_{4}$ move on the circle $\tau_{R_{2}}, \tau_{S_{2}}=\tau_{R_{4}}$ and $\tau_{S_{3}}=\tau_{S_{4}}$,
- trajectories τ_{M} and τ_{N} of the points M and N (with the following parameters: $l=d=10 \mathrm{~mm}, m=n=5 \mathrm{~mm}$ and $\delta=\varepsilon=90^{\circ}$) are complex curves in three-dimensional space. A change to the values of the coordinates of these points in the function of time t, during one work cycle, is presented in Fig. 6 .

Fig.6. Coordinates of points, a) $M\left(X_{M}, Y_{M}, Z_{M}\right)$ of connector s_{2}, b) $N\left(X_{N}, Y_{N}, Z_{N}\right)$ of connector s_{4}.

The results presented in Figs 5 and 6 of simulation tests illustrate only selected factors that have an influence of the work of the 5 R mechanism. The simulation model developed makes it possible to test the linear and angular displacements of the elements in the area of an analysis of the relative position of all of its members, the determination of the virtual space outline, where all the elements of the mechanism work in accordance with the function that follows from the mathematical model, etc.

3.2. Velocities and accelerations

Knowing those quantities that describe the configuration of the kinematic system of the 5 R mechanism, one can describe the movement in the area of velocities and accelerations, which are defined as successive derivatives of linear and angular displacements in relation to time (Budniak and Bil, 2012). To determine these, vector coordinates, complex numbers, absolute coordinates etc. are used. In the present article, those parameters were determined on the grounds of numerical simulations in the SolidWorks Motion software (Chang, 2011).

An analysis of the linear velocity of the movement of the points of the 5 R mechanism was conducted with the constant rate of rotation of the active member r_{2}, which rotates with angular velocity $\omega_{2}=2 \pi s^{-1}$. Fig. 7 presents a change to the velocities v_{M} and v_{N} for the points M and N.

The resultant linear velocity v_{M} (Fig.7a) is in the range from $80.9 \mathrm{~ms}^{-1}$ to $158.2 \mathrm{~ms}^{-1}$. The linear velocity is $v_{M}=47.4 \div 917.9 \mathrm{mms}^{-1}$ (Fig. 7 b). The greatest changes to the linear velocities are observed in the time interval $t=0.55 \div 0.9 \mathrm{~s}$.

Fig.7. Linear velocities: a) v_{M} point M of connector s_{2}, b) v_{N} point N of connector s_{4}

An analysis of the linear acceleration of the points M and N (Fig.8) was conducted with the same parameters as for the simulations of linear velocities.

Fig.8. Linear accelerations: a) a_{M} point M of connector s_{2}, b) a_{N} point N of connector s_{4}

The resultants of the acceleration of the points M and N in the time interval $t=0 \div 0.65 \mathrm{~s}$ are of a stable nature $\left(a_{M} \approx 0.74 \mathrm{~ms}^{-2}, a_{N} \approx 0.5 \mathrm{~ms}^{-2}\right.$). However, in time $t=0.65 \div 0.85 \mathrm{~s}$, an instability was observed of the acceleration value, which is in a wide range and reaches maximum values $a_{\text {Mmax }} \approx 3.4 \mathrm{~ms}^{-2}$, $a_{N \max } \approx 78.2 \mathrm{~ms}^{-2}$. This is connected with large curvatures of the trajectories τ_{M} and τ_{N}.

Conclusions

The purpose of this article was to present the potential of the present-day CAD/CAE systems to design and analyse the designs of spatial multi-member mechanisms on the example of a five-membered spatial mechanism 5R. The simulation model presented allows kinematic analyses which enable the following: carrying out tests of collisions in motion, the determination of the relative positions of the
characteristic points of the mechanism, the determination of the virtual space where all the elements of the mechanism work in compliance with the function that follows from the mathematical model. This system realizes the idea of virtual modelling of physical systems and it reduces the number of prototypes required to produce a new design.

The results presented in the study of sismulation tests illustrate only selected factors that have an impact on the operation of a spatial four-member mechanism 5R. The simulation model developed constitutes a point of departure for further analyses.

In the future, practical applications are foreseen of the results of the analyses presented in this article in an optimization of the spatial designs of spatial multi-member mechanisms.

Nomenclature

```
            \(a_{M}, a_{N}-\) linear accelerations the points \(M\) and \(N\left[\mathrm{~mm} / \mathrm{s}^{2}\right]\)
            \(l, d\) - shift points \(M\) and \(N\) along the arms \(s_{2}\) and \(s_{4}[\mathrm{~mm}]\)
            \(m, n-\) distance between the points \(M\) and \(N\) of arms \(s 2\) and \(s 4 \quad[\mathrm{~mm}]\)
            \(\boldsymbol{q}_{s_{2}}, \boldsymbol{q}_{r_{4}}\) - vectors that determine the position of the points \(S_{2}\) and \(R_{4}\)
            \(R_{R_{2}}\) - rotation matrix that determines the rotation of the local system of coordinates \(R_{2} X_{S_{2}} Y_{S_{2}} Z_{S_{2}}\) around
                axes \(X_{S_{2}}, Y_{S_{2}}, Z_{S_{2}}\)
            \(R_{Q_{3}}\) - rotation matrix that determines the rotation of the local system of coordinates \(Q_{3} X_{Q_{3}} Y_{Q_{3}} Z_{Q_{3}}\) around
                axes \(X_{R_{3}}, Y_{R_{3}}, Z_{R_{3}}\)
            \(R_{S_{3}}\) - rotation matrix that determines the rotation of the local system of coordinates \(R_{3} X_{S_{4}} Y_{S_{4}} Z_{S_{4}}\) around
                axes \(X_{S_{4}}, Y_{S_{4}}, Z_{S_{4}}\)
            \(r_{\Delta}\) - vectors the closing link
\(\boldsymbol{r}_{1}, \boldsymbol{r}_{2}, \boldsymbol{r}_{3}, \boldsymbol{s}_{2}, \boldsymbol{s}_{3}, \boldsymbol{s}_{4}\) - vectors that determine the position of the nodal points \(R_{1}, R_{2}, R_{3}, S_{2}, S_{3}, S_{4}\)
            \(S_{2}, S_{4}\) - the vectors of the positions in the absolute system of coordinates \(O X Y Z\)
    \(S_{2 R_{2}}, S_{4 S_{3}}\) - the vectors of the positions of the points \(S_{2}\) and \(S_{4}\) in their local systems of coordinates
            \(T_{R_{2}}\) - vector that describes the position of the local system of coordinates \(R_{2} X_{S_{2}} Y_{S_{2}} Z_{S_{2}}\) in the system of
                absolute coordinates \(O X Y Z\)
            \(T_{Q_{3}}\) - vector that describes the position of the local system of coordinates \(Q_{3} X_{R_{3}} Y_{R_{3}} Z_{R_{3}}\) in the system of
                absolute coordinates \(O X Y Z\)
            \(T_{S_{3}}\) - vector that describes the position of the local system of coordinates \(Q_{3} X_{S_{3}} Y_{S_{3}} Z_{S_{3}}\) in the system of
                absolute coordinates \(O X Y Z\)
            \(v_{M}, v_{N}-\) linear velocities the points \(M\) and \(N \quad[\mathrm{~mm} / \mathrm{s}]\)
            \(\delta, \varepsilon\) - the angles of rotation of the arms \(m\) and \(n\) [grad]
            \(\tau_{M}, \tau_{N}-\) trajectories of the points \(M\) and \(N\)
    \(\tau_{R_{2}}, \tau_{R_{4}}, \tau_{S_{2}}, \quad\) - trajectories of the points \(R_{2}, R_{4}, S_{2}, S_{3}, S_{4}\)
    \(\tau_{S_{3}}, \tau_{S_{4}}\),
            \(\omega_{2}\) - angular velocity of the active arm \(r_{2} \quad\left[s^{-l}\right]\)
```


References

Bil T. (2012): Analysis of the Bennett linkage in the geometry of tori. - Mech. and Mach. Theory, doi:10.1016/j.mechmachtheory.2012.03.003

Bil T. (2012): The new general model four-bar spatial linkage. - Int. J. of Applied Mechanics and Engineering, vol.17, No.3, pp.677-688.

Bil T. and Budniak Z. (2014): Model of 5R spatial linkage in the geometry of tori. - XXIV International Conference on Theory of Machines and Mechatronic Systems, pp.823-830.

Budniak Z. and Bil T. (2012): Simulation of the movement of four-bar spatial linkage. - Int. J. of Applied Mechanics and Engineering, vol.17, No.3, pp.723-732.

Chang Kuang-Hua (2013): Motion Simulation and Mechanism Design with SolidWorks Motion 2013. - SDC Publications, ISBN: 978-1-58503-902-9, p. 132.

Received: June 3, 2014
Revised: October 1, 2014

[^0]: * To whom correspondence should be addressed

